
J Glob Optim (2007) 38:181–199
DOI 10.1007/s10898-006-9067-3

O R I G I NA L PA P E R

Survivable network design under optimal and heuristic
interdiction scenarios

J. Cole Smith · Churlzu Lim · Fransisca Sudargho

Received: 3 January 2006 / Accepted: 1 July 2006 / Published online: 9 August 2006
© Springer Science+Business Media B.V. 2006

Abstract We examine the problem of building or fortifying a network to defend
against enemy attacks in various scenarios. In particular, we examine the case in
which an enemy can destroy any portion of any arc that a designer constructs on
the network, subject to some interdiction budget. This problem takes the form of a
three-level, two-player game, in which the designer acts first to construct a network
and transmit an initial set of flows through the network. The enemy acts next to
destroy a set of constructed arcs in the designer’s network, and the designer acts last
to transmit a final set of flows in the network. Most studies of this nature assume that
the enemy will act optimally; however, in real-world scenarios one cannot necessarily
assume rationality on the part of the enemy. Hence, we prescribe optimal network
design algorithms for three different profiles of enemy action: an enemy destroying
arcs based on capacities, based on initial flows, or acting optimally to minimize our
maximum profits obtained from transmitting flows.

Keywords Network design · Integer programming · Network interdiction · Game
theory

1 Introduction

The continuous increase of telecommunications and transportation needs has made
the design of cost-efficient networks that meet requirements concerning flexibility
and survivability a major challenge. Many traditional network design algorithms do
not take into account the survivability aspect of a network, which can perhaps leave
the network susceptible to failures of small subsets of its arcs. It is important to

J. C. Smith (B) · C. Lim
Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA
e-mail: cole@ise.ufl.edu

F. Sudargho
Department of Systems and Industrial Engineering, The University of Arizona, Tucson, AZ, USA

182 J Glob Optim (2007) 38:181–199

design networks that are robust with respect to accidental failures like transportation
breakdowns, road closures, and telephone line breaks, or to failures made maliciously
by enemy entities. Vital applications that inspire this research include networks in
voice and data communication, military services, and mass transit.

In general, the Survivable Network Design (SND) problem seeks a minimum-cost
robust network configuration that provides a number of alternative paths between
nodes of the network. Many SND studies have focused on telecommunication appli-
cations (see [1, 8, 9, 20, 21, 23–25], e.g.). Given point-to-point traffic demands, the
general SND problem assigns capacities to arcs (perhaps from among a finite set of
alternatives) in order to minimize construction/expansion costs, while satisfying cer-
tain survivability constraints under any single node or arc failure. A critical survivabil-
ity requirement is the minimum degree of flow feasibility after a network component
failure. That is, the network is survivable if specified percentages of demands can be
satisfied when any single node or arc fails. Some alternative survivability conditions
impose upper bounds on path lengths [1] and/or require the existence of multiple
paths between each point-to-point demand [9].

We remark that the aforementioned studies only consider the random failure of
network components. Furthermore, most of these research efforts analyze single com-
ponent failures (some exceptions can be found in [21], who consider the simultaneous
failure of pairs of arcs, and [14], who consider the case of multiple arc failures in a
Benders decomposition scheme). However, when the network is maliciously attacked,
this random failure assumption might not be reasonable since the enemy will attempt
to make the maximum impact on the network (see [22], e.g.). Also, for the common
scenario in which the enemy can simultaneously attack multiple arcs, enumerating
failure scenarios consisting of “any k arcs” for some integer k becomes computation-
ally intractable. With this motivation, we are particularly interested in designing a
survivable network under an enemy’s choice of multiple attacks. To this end, we need
to understand and model how a rational enemy will act for a given network topology,
which is referred to network interdiction in the literature.

The network interdiction problem has received much attention in the literature
due to its applications in military and homeland security operations. Wollmer [28]
proposes an algorithm that destroys (i.e., interdicts) a prescribed number of arcs in
a network in order to minimize the follower’s maximal flow. Wood [29] provides an
integer programming formulation for a discrete interdiction problem, and extends
the model to allow for continuous interdiction, multiple sources and sinks, undirected
networks, multiple interdiction resources, and multiple commodities. This work was
continued by Cormican et al. [11], in which the leader minimizes the expected maxi-
mum flow, given uncertainties regarding the success of interdiction and arc capacities.
A different interdiction problem is examined by Fulkerson and Harding [13], who
examine the problem of maximizing the shortest source-sink path in the presence of
arc-extension costs, which serve as interdiction costs. A recent study by Israeli and
Wood [15] develops two decomposition algorithms using super-valid inequalities and
set covering master problems. Finally, Lim and Smith [17] examine the multicommod-
ity flow network interdiction problem under assumptions of discrete and continuous
enemy action.

The problem studied here can be modeled as a three-stage problem. In the first
stage, the network designer/operator (referred to as the “designer” in this paper) con-
structs a network in which each arc has a fixed construction cost, a maximum capacity,
and a per-unit flow profit (as assumed in [11, 17, 27]). The designer is also restricted

J Glob Optim (2007) 38:181–199 183

by a budget on the arc construction costs. Before the enemy acts, the designer places
an initial set of multicommodity flows on the network, which yields some measure of
initial profits (measured by the revenue generated by successfully shipping units of
commodity from origins to destinations minus the flow costs).

In the second stage, the enemy inflicts damage to the network by reducing the
capacity of certain arcs. We consider three enemy algorithms in this paper: greedily
destroy the largest-capacity arcs, greedily destroy the arcs having the largest initial
flows, or optimally minimize the maximum possible post-interdiction flow profit. The
first two cases might represent the case in which the enemy intends to maximally
disrupt the network, but is acting according to a heuristic strategy due to real-time
considerations or due to limited information. For all of these cases, it is important to
note that the enemy can destroy portions of arcs by removing some of their capacity,
rather than being restricted to integer interdiction actions. This assumption is made
in contrast to other studies in which interdiction is binary; i.e., each arc must be either
completely interdicted or left entirely alone.

Finally, in the third stage, the designer maximizes post-interdiction profit by solving
a multicommodity flow problem on the remaining network. Hence, our problem is
different from those in previous SND studies in that our objective function includes a
weighted combination of flow profits before and after enemy interdiction minus arc
construction costs.

Note that when arcs are heuristically disrupted, the enemy has a different objec-
tive function from the designer’s. A mathematical programming version of this type
of Stackelberg game is a (linear) bilevel programming (also known as two-level pro-
gramming or hierarchical optimization) problem [2, 6, 12, 16] in which the enemy’s
optimization problem appears in the set of the designer’s constraints. Similar to
bilinear programming problems, it is known that an optimal solution to the linear
bilevel programming problem can be found among pairs of the extreme points to the
designer’s and enemy’s polytopes [3]. Two notable solution methods for solving this
problem are implicit enumeration of extreme points [5, 7] and reformulation using
KKT (Karush–Kuhn–Tucker) optimality conditions [4, 12]. For a more comprehensive
review of general bilinear programming (we refer the reader to [3, 10, 27]).

The remainder of this paper is organized as follows. In Sect. 2, we provide a formal
description and notation of the problem with examples for each interdiction scenario.
Then, in Sect. 3, we present solution methods that find an optimal network design
under three scenarios. We report computational results that illustrate the efficacy of
the proposed methods in Sect. 4. Finally, we conclude the paper in Sect. 5.

2 Problem statement and notation

In this section, we describe the mathematical notation for our problem, along with
a precise description of the three interdiction scenarios considered in this paper.
Consider a directed graph G(N, A) with node set N and arc set A. Associated with
each arc i ∈ A are a nonnegative construction cost ci, a nonnegative interdiction cost
bi, and an arc capacity qi. The designer is limited by a budget of C for construct-
ing arcs in the network, while the enemy is constrained by an interdiction budget
of B.

Define RS(j) and FS(j), ∀j ∈ N, to be the reverse star and forward star of node
j, respectively, i.e., RS(j) = {i ∈ A : arc i enters node j} and FS(j) = {i ∈ A : arc i

184 J Glob Optim (2007) 38:181–199

leaves node j}. Furthermore, define K to be the set of commodities, and let d j
k denote

the demand of commodity k ∈ K at node j ∈ N. If d j
k > 0, then j is a supply node

of commodity k, while d j
k < 0 implies that j is a destination node for commodity

k. Without loss of generality, we assume that
∑

j∈N d j
k = 0, ∀k ∈ K. We are given

a per-unit flow profit f i
k for transmitting a unit of commodity k over arc i for each

i ∈ A and k ∈ K. This value includes the (nonpositive) per-unit flow cost on arc i,
plus (positive) revenue for successfully shipping a unit of commodity k if it enters a
destination node of k. This reward is subtracted from the flow profit if arc i exits a
destination node for k.

It is possible that there may not exist a feasible multicommodity flow in the network
(especially after interdiction), or that it might not be cost-effective to route all of the
requested demands for some commodity. Thus, we create dummy arcs in the network
to allow some origin nodes to send less than their supplies, and destination nodes to
receive less than their demands. These dummy arcs have zero construction and flow
profits (unless some disposal or shortage costs are appropriate), and large enough
interdiction costs and capacities to ensure that they cannot be destroyed by the enemy.

The objective function maximizes some convex combination of the profit obtained
from transmitting flows across the network before and after interdiction, where profit
is measured by revenues gained from successful shipment of goods minus arc con-
struction costs. Suppose that 100ρ% of flows occur before enemy interdiction for
some ρ ∈ [0, 1]. Then our total profit is ρ times our pre-interdiction flow profits plus
(1− ρ) times our post-interdiction flow profits, minus the arc construction costs.

In this paper, we consider three interdiction scenarios. In case 1, the enemy destroys
arcs having the largest capacity until his budget is exhausted or until no arcs remain.
In case 2, the enemy destroys arcs on which the largest pre-interdiction flows exist.
Finally, in case 3, the enemy acts to (optimally) minimize the designer’s maximum
post-interdiction flow profit.

To illustrate these interdiction schemes, suppose that the network designer can
build arcs on the network depicted in Fig. 1(a). There exist two commodities in the
problem whose origin-destination pairs are (1, 3) and (2, 4). Each origin (destination)
node can supply (receive) at most ten units. (Recall that we permit shortages in sup-
plies and demands by drawing dummy arcs from node 1 to node 3, and from node 2 to
node 4. These arcs are omitted in Fig. 1(a) for ease of readability.) The arcs are labeled
by their capacity, unit flow profit of commodity 1, and unit flow profit of commodity
2, i.e., (qi, f 1

i , f 2
i) ∀i = 1, . . . , 5. For this instance, suppose that the designer achieves a

revenue of 5 for each unit of commodity 1 delivered, and a revenue of 10 for each unit
of commodity 2 delivered, while the unit flow cost is 1 for any commodity on any arc.
Assume that each arc can be constructed by the designer and destroyed by the enemy
with a common cost of 10, i.e., ci = bi = 10 ∀i = 1, . . . , 5. Let the designer’s budget be
C = 50 and the enemy’s budget be B = 20. Finally, let the profit weight be ρ = 0.5. If
no interdiction action is taken, the optimal design and flows would be given by those
in Fig. 1(b), yielding a profit of 110 (= 130− 20) in this scenario.

Figure 2 depicts the optimal solution in case 1, where Fig. 2(a) depicts the optimal
network design and pre-interdiction flows, and Fig. 2(b) depicts the optimal post-
interdiction flows. From this network design, the enemy would destroy arcs (1,2) and
(2,4), since they have the largest capacities. Note that the designer needs to alter the
initial flows of commodity 2 using arcs (2,3) and (3,4) after interdiction. The overall
profit is now reduced to 75 (= (0.5)(130)+ (0.5)(120)− 50).

J Glob Optim (2007) 38:181–199 185

1

2

3

4

(20,–1,–1)
(10,4, –1)

(10,–6,9)

(10,4, –1)

(15,–1,9)

(qi, f
1
i , f2

i)(a) (b)

Example network design instance.

1

2

3

4

10units of commodity 1

10units of commodity 2

Optimal network design and flows
 without interdiction.

Fig. 1 Network topology and optimal solution without interdiction

1

2

3

4

10units of commodity 1

10units of commodity 2

(a)

Optimal design and pre-interdiction flows. Optimal post-interdiction flows.

1

2

3

4

10units of commodity 1

10units of
commodity 2

10units of
commodity 2

(b)

Fig. 2 Network design and flows under case 1 interdiction

In case 2, the enemy will destroy arcs having the largest initial flows. Figure 3 shows
the optimal network design and flow patterns. Note that the initial flow on arc (1, 3)
is slightly smaller than those on arcs (2, 3) and (3, 4) by some ε > 0 units so that
the enemy can be induced to destroy the latter two arcs as desired by the network
designer. The network designer’s profit is 85−2ε (= (0.5)(120−4ε)+ (0.5)(130)−40).

Finally, Fig. 4 illustrates the optimal network design for the third case, where the
enemy optimally destroys arcs to minimize the designer’s flow profit after interdiction.
While the network design is same as the one in case 2, the enemy optimally disrupts
arcs (2, 3) and (2, 4) by observing that commodity 2 yields a greater profit to the net-
work designer than commodity 1 does. Then, the designer can send post-interdiction
flows only on arc (1, 3) as in Fig. 4(b). The profit is 45 (= (0.5)(130)+ (0.5)(40)− 40).
(The enemy also has an alternative optimal solution in which arcs (2, 4) and (3, 4) are
destroyed.) Despite the fact that arc (3,4) does not carry any pre- or post-interdiction
flow, the designer must build this arc to prevent the enemy from simply destroying
arcs (1,3) and (2,4), which, without the presence of (3,4), would leave the designer
with no post-interdiction flows. (The designer also has an alternative optimal solution
in which only arcs (1,3) and (2,4) are constructed, and in which no post-interdiction
flows exist.)

186 J Glob Optim (2007) 38:181–199

1

2

3

4

10 − ε units of
commodity 1

10units of
commodity 2

10units of
commodity 2

(a) (b)

Optimal design and pre-interdiction flows. Optimal post-interdiction flows.

1

2

3

4

10units of commodity1

10units of commodity 2

Fig. 3 Network design and flows under case 2 interdiction

1

2

3

4

10units of commodity 1

10units of commodity 2

(a)

Optimal design and pre-interdiction flows. Optimal post-interdiction flows.

1

2

3

4

�
10units of commodity 1

(b)

Fig. 4 Network design and flows under case 3 interdiction

Before proceeding to the next section, we remark that all three problems described
in this section are difficult to solve. In particular, even a special case in which the fol-
lower’s budget is set as zero reduces to a capacitated multicommodity network design
problem, which is NP-hard in the strong sense [18, 19].

3 Network design algorithms

In this section, we provide mathematical programming algorithms for solving the net-
work design problem under each interdiction scenario. We define the following set
of decision variables for these models. Let xi, ∀i ∈ A, be a binary decision variable
that equals to 1 if arc i is constructed and 0 otherwise. For the flow decision variables,
we let uk

i and vk
i , ∀i ∈ A, ∀k ∈ K, represent the flow of commodity k on arc i before

and after enemy interdiction, respectively. Also, let wi ∈ [0, 1], ∀i ∈ A, represent
the remaining percentage of arc is capacity after enemy interdiction. Although wi is
determined by the enemy, we view it as a decision variable induced by the designer’s
choice of x-variables.

J Glob Optim (2007) 38:181–199 187

In the next three sections, we propose solution methods for each case. As mentioned
earlier, the enemy has a different objective function than the designer’s for the first
two cases. Hence, these problems can be solved via conventional bilevel programming
techniques. However, exploiting the knapsack constraint in the enemy’s interdiction
problem, we provide equivalent mixed integer formulations. These formulations can
then in turn be solved by standard commercial software. For the third case, we design
a cutting-plane algorithm that finds an optimal solution in a finite number of steps. (A
sketch of these ideas appears in [26].)

3.1 Case 1: capacity-based interdiction

In this section, suppose that the enemy repeatedly destroys arcs having the largest
capacity until the budget B is exhausted. For our initial discussion, we assume that
all arc capacities are unique (we discuss the implication of this assumption further at
the end of this subsection). Hence, we can order the arc indices i = 1, . . . , |A| so that
qi < qi+1 ∀i = 1, . . . , |A| − 1, and so the enemy will prefer to destroy arc i before
destroying i+ 1. Note that in general, this overall ordering can be based on any input
data criteria. We examine two different approaches for solving this problem.

3.1.1 Cutting plane algorithm

A partial formulation for this problem is given as follows.

Maximize ρ
∑

k∈K

∑

i∈A

f k
i uk

i + (1− ρ)
∑

k∈K

∑

i∈A

f k
i vk

i −
∑

i∈A

cixi, (1a)

subject to
∑

i∈A

cixi ≤ C, (1b)

∑

i∈FS(j)

uk
i −

∑

i∈RS(j)

uk
i = dk

j ∀k ∈ K ∀j ∈ N, (1c)

∑

i∈FS(j)

vk
i −

∑

i∈RS(j)

vk
i = dk

j ∀k ∈ K ∀j ∈ N, (1d)

∑

k∈K

uk
i ≤ qixi ∀i ∈ A, (1e)

∑

k∈K

vk
i ≤ qiwi ∀i ∈ A, (1f)

wi ≤ xi ∀i ∈ A, (1g)

wi ≥ 0 ∀i ∈ A, (1h)

uk
i , vk

i ≥ 0 ∀i ∈ A ∀k ∈ K, (1i)

xi ∈ {0, 1} ∀i ∈ A. (1j)

The objective (1a) minimizes the pre-interdiction flow costs weighted by ρ, plus the
post-interdiction flow costs weighted by (1−ρ), minus the arc construction costs. The
arc construction budget constraint is given by (1b), while the flow conservation con-
straints before and after enemy interdiction are given by (1c) and (1d), respectively.
Constraints (1e) and (1f) represent arc capacity restrictions on the flows. Constraints
(1g) state that wi = 0 if arc i was not constructed, and (1h) and (1j) state logical

188 J Glob Optim (2007) 38:181–199

restrictions on the variables. However, these conditions are only necessary for the
w-solution to this problem to reflect the true decision of the enemy, and are obviously
not sufficient.

There are an exponential number of valid inequalities that can be used to enforce
the w-solution to (1) to match the enemy’s actual decisions. We examine a set of valid
inequalities that are useful in at least partially enforcing this relationship. First, note
that the largest-capacity arcs will be attacked by the enemy if constructed, and hence
some arc capacity will never be available after interdiction. First determine the largest
index � such that all constructed arcs 1, . . . , �− 1 will be completely destroyed by the
enemy. Define

B′i =
i−1∑

g=1

bg ∀i ∈ A, (2)

where B′1 is taken to be 0. Hence, index � is the arc in A for which B′� ≤ B and
B′� + b� > B, and we have that wi = 0 ∀i < �. Similarly, note that the maximum
proportion of arc � that can remain after interdiction is

θ = 1− B− B′�
b�

(3)

and hence we can state that w� ≤ θx�; however, we will tighten this inequality in the
following discussion.

Next, for each i ∈ A, i ≥ �, we derive valid inequalities corresponding to each arc
g ∈ A, g < i of the form

wi ≤ γigxi + (δi − γig)xg ∀i, g ∈ A, g < i, � ≤ i, (4)

where:

γig = max

{

0, 1−max

{

0,
B− B′i + bg

bi

}}

∀i, g ∈ A, g < i, � ≤ i (5)

and where δ� = θ and δi = 1 for i ∈ A, i > �. For constraints (4), γig represents the
maximum remaining proportion of arc i if xi = 1 and xg = 0 (i.e., the enemy has not
spent any of its resources on arc g). This maximum value is possible when all other
arcs 1, . . . , i− 1 except for g have been built. The maximum remaining proportion of
arc i if both xi and xg are constructed is given by δi, so we add δi − γig back to the
right-hand side if xg = 1. Note that if γig = 1, this inequality simply duplicates the
wi ≤ xi constraint stated in (1g).

Finally, we can also develop valid inequalities under the assumption that arcs
1, . . . , i − 1 have not yet been constructed, and then state the maximum possible
increase in the capacity for arc i as lower-indexed arcs are constructed. Observe that
if arc i is constructed, its capacity must be at least λi = max{0, (bi − B)/bi}, since if
bi > B, there must exist at least (bi−B)/bi percent of arc is capacity remaining. Also,
if arc g ∈ A, 1 ≤ g < i is constructed, the enemy can spend up to bg units of its
budget on arc g, which implies that up to min{bg/bi, (1 − λi)} percent of arc i might
be recovered. These inequalities are given as follows.

wi ≤ λixi +
i−1∑

g=1

min{bg/bi, (1− λi)}xg ∀i ∈ A, i ≥ �. (6)

J Glob Optim (2007) 38:181–199 189

We can then solve (1) in conjunction with these valid inequalities, and obtain
optimal variable values x̂ and ŵ. Let wi be the true action of the enemy for i ∈ A given
x̂ (i.e., the w-variables describe the actual remaining arc capacities after interdiction,
given x̂). If wi = ŵi for each i ∈ A, then we have obtained the optimal solution. Else,
we add cutting planes to force the w-variables to match the enemy’s true decision. For
each i ∈ A such that wi < ŵi, we add the following constraint:

wi ≤ wixi +
i−1∑

g=1

min{bg/bi, 1− wi}(1− x̂g)xg. (7)

Equation (7) imposes an upper bound of wi on wi, unless some other higher-preference
arcs that are not currently being built will be built in the next iteration, thus forcing
the enemy to expend resources on other arcs. This valid inequality cuts off the current
solution since the right-hand side is currently equal to wi. Each such constraint is then
passed back to (1), and the model is resolved until w = ŵ.

3.1.2 Static optimization model

A model that can be solved without need for cutting planes makes use of the fact
that there will exist only one w-variable value that can be fractional, since the enemy
is essentially solving a linear knapsack problem. Define binary decision variables
zi, ∀i ∈ A, equal to one if and only if xi = 1, all constructed arcs with an index smaller
than i are completely destroyed, and all constructed arcs with an index greater than
i are not affected by the enemy. Arc i itself may be completely or partially inter-
dicted, or unaffected by the enemy. We assume that the enemy exhausts the entire
interdiction budget. (This assumption forces us to build at least enough capacity so
that the enemy can destroy B units; we handle this assumption by adding a dummy
arc between two dummy nodes disconnected from the rest of the network. This arc
will have a zero arc construction cost, zero flow profit, any arbitrary capacity, and an
interdiction cost of B.) These restrictions, along with (1g), are enforced as follows:

∑

i∈A

zi = 1, (8a)

wi ≤
i∑

g=1

zg ∀i ∈ A, (8b)

wi ≥ xi −
|A|∑

g=i

zg ∀i ∈ A, (8c)

∑

i∈A

bi(xi − wi) = B, (8d)

zi ∈ {0, 1} ∀i ∈ A. (8e)

The static optimization model thus incorporates (8) into (1). Constraint (8a) requires
that exactly one variable serves as the dividing point, such that all arcs having a higher
capacity than qi are destroyed (enforced by (8b)), and all arcs having a smaller capac-
ity than qi are not interdicted at all (enforced by (8c)). Constraint (8d) ensures that
the enemy will use the entire interdiction budget, while (8e) states logical constraints

190 J Glob Optim (2007) 38:181–199

on the z-variables. We compare the effectiveness of the dynamic and static models in
Sect. 4.

Recall that we have assumed that all capacities are different. Before proceeding to
the next case, we discuss how to handle the problem in the presence of arcs having
equal capacities. A possible problem that arises when a tie exists is shown in Fig. 5,
where there is a single commodity with ten units of supply at node 1 and ten units of
demand at node 3. The three numbers in parentheses represent qi, ci(= bi), and f 1

i ,
respectively. For this example, we set ρ = 0.5, C = 3, and B = 2.

The optimal solution to this problem is to construct all three arcs, and expect that
the enemy will cooperatively destroy (1,2) and (2,3). However, in reality, the enemy
would not necessarily break ties in favor of the network designer. One way to resolve
this difficulty is to slightly perturb arc capacities as desired, if possible. That is, if
qi = qj and the network designer wishes the enemy to destroy arc i before arc j, then
it might be possible to put qi ← qi− ε (or even qj ← qj+ ε) for a small value ε > 0. In
the above example, increasing capacities of (1,2) and (2,3) by ε will induce the enemy
to destroy (1,2) and (2,3).

Of course, this capacity adjustment strategy might not be possible. In that case,
the modeling of the enemy’s behavior needs to be better specified. If there exist sec-
ondary “tie-breaking” criteria on which arcs the enemy will prefer to destroy, then
we can simply use our prior algorithm without modification. Else, if the enemy is
assumed to break ties randomly, then we could solve a stochastic program in which
the random outcomes correspond to random tie-breaking priorities. The first-stage
decisions would correspond to the x-variables, the random outcomes would be a set
of tie-breaking orderings among arcs having the same capacity, and the recourse
decisions would simultaneously yield the enemy’s decision and the designer’s post-
interdiction flows. Finally, the enemy might be assumed to break ties by acting opti-
mally among ties. While addressing these scenarios formally is beyond the scope of
this paper, the cutting-plane strategy in Sect. 3.3 establishes one possible framework
for solving such problem extensions.

3.2 Case 2: flow-based interdiction

In this case, the enemy interdicts the arcs having the largest pre-interdiction flows.
Since the enemy decision does not depend on a simple set of binary decision variables,
the static optimization model in the previous section must be modified for this case.

Once again, we determine an index i∗ such that arc i∗ may be partially destroyed,
implying that every arc with a greater flow than the flow on arc i∗ must be completely
destroyed, while all arcs with a smaller flow than the flow on arc i∗ cannot be inter-
dicted. Unlike the previous case, we do not define a decision variable to determine

1

2

3
(10,1,9)

(10,1,–1)
(10,1,9)

10 –10

Fig. 5 Illustration of ties in the enemy interdiction problem

J Glob Optim (2007) 38:181–199 191

the identity of i∗, but instead we must solve one integer program for each possible
value that i∗ can take. Note that arcs with a larger flow than the flow on arc i∗ will be
completely destroyed while those with smaller flows will survive. Define ε > 0 as an
arbitrarily small constant (whose precise value we will discuss subsequently). Then,
we add the following constraints to model (1):

∑

k∈K

uk
j −

∑

k∈K

uk
i∗ ≤Mji∗(xj − wj)− εxj ∀j ∈ A, j �= i∗, (9a)

∑

k∈K

uk
j −

∑

k∈K

uk
i∗ ≥ −Mi∗j(1− (xj − wj))+ εxj ∀j ∈ A, j �= i∗, (9b)

∑

i∈A

bi(xi − wi) = B, (9c)

0 ≤ wi∗ ≤ 1 ∀i∗ ∈ A, (9d)

wi ∈ {0, 1} ∀i ∈ A− {i∗}, (9e)

xi∗ = 1, (9f)

where Mij = qi + ε. The addition of the constraints in (9) to model (1) captures the
flow-based greedy enemy interdiction model, assuming that the enemy completely
destroys all arcs having more flow than the flow on i∗, and does not interdict arcs
having less flow than arc i∗. By the disjunction of (9a) and (9b), the flow of arc j must
satisfy either

∑
k∈K uk

j ≤
∑

k∈K uk
i∗ − εxj or

∑
k∈K uk

j ≥
∑

k∈K uk
i∗ + εxj. This guaran-

tees the uniqueness of the enemy’s solution (the implications of which are discussed
in more detail below). Note that if xj = 0, then wj = 0 as well. On the right-hand side
of (9a) would then be zero, and since

∑
k∈K uk

j must be zero, this inequality is valid.
On the right-hand side of (9b) is −Mi∗j, so this inequality remains valid as well even
if

∑
k∈K uk

i∗ = qi∗ . Now assume that xj = 1. If there exists more initial flow on arc j
than on i∗ (i.e.,

∑
k∈K uk

j ≥
∑

k∈K uk
i∗ + εxj), then since xj = 1, we have by (9a) that

arc j must be interdicted (by setting wj = 0). Similarly, (9b) forces wj = xj if there is
less flow on j than i∗ (i.e.,

∑
k∈K uk

j ≤
∑

k∈K uk
i∗ − εxj).

The value of ε is an important factor in this algorithm. Once again, consider the
instance depicted in Fig. 5 without ε. The optimal solution to this problem is to con-
struct all three arcs, send slightly more than five units on arcs (1,2) and (2,3), and
slightly less than five units on (1,3), inducing the enemy to destroy (1,2) and (2,3).
Our post-interdiction flows would then send all ten units on (1,3). There exists no
optimal solution to this problem; however, the optimal objective function approaches
the situation in which exactly five units are sent on all arcs before interdiction, and the
enemy decides to interdict (1,2) and (2,3). Hence, the value of ε is used to approximate
this convergence and to assure the existence of a solution.

3.3 Case 3: optimal interdiction

Finally, we consider the third case in which the enemy optimally disrupts arcs so as to
minimize the designer’s profit. (The enemy has complete information of the network
design, including arc capacities, flow profits, and demands.) Given a network topology
x, therefore, the enemy solves the following continuous multicommodity flow network
interdiction problem.

192 J Glob Optim (2007) 38:181–199

Minimize
w∈W maximize

∑

k∈K

∑

i∈A

f k
i vk

i , (10a)

subject to
∑

k∈K

vk
i ≤ qixiwi, ∀i ∈ A, (10b)

∑

i∈FS(j)

vk
i −

∑

i∈RS(j)

vk
i = dk

j ∀k ∈ K ∀j ∈ N, (10c)

vk
i ≥ 0 ∀i ∈ A, ∀k ∈ K, (10d)

where W = {w ∈ R|A| :
∑

i∈A bi(1 − wi) = B, 0 ≤ wi ≤ 1, ∀i ∈ A}. Note that the
inner maximization problem has an optimal solution given any enemy’s choice of w
(perhaps with the use of dummy arcs that ensure the existence of a feasible multi-
commodity flow). Taking the linear dual of the inner maximization problem, where
βi is associated with (10b) ∀i ∈ A and αk

j is associated with (10c) ∀j ∈ A and ∀k ∈ K,
the interdiction problem can be reformulated as the following disjointly constrained
bilinear program (BLP).

Minimize
∑

k∈K

∑

j∈N

dk
j αk

j +
∑

i∈A

(qixi)wiβi, (11a)

subject to αk
f (i) − αk

t(i) + βi ≥ f k
i , ∀i ∈ A, ∀k ∈ K, (11b)

αk
j unrestricted, ∀j ∈ N, ∀k ∈ K, (11c)

βi ≥ 0, ∀i ∈ A, (11d)

w ∈W, (11e)

where arc i exits node f (i) and enters node t(i). Note that the enemy’s decision vari-
ables (w) and the designer’s dual variables associated with arc capacity constraints
(β) constitute bilinear terms in the objective function. Also, the x-variables appear
only in the objective function.

One important property of this BLP formulation is that a global optimum can be
found among pairs of extreme points from respective feasible regions. In particular,
the enemy has a single knapsack constraint besides bounds on variables, and hence,
each extreme point has only one basic variable (whose value lies in the interval [0,1])
while all other nonbasic variables are either set at their lower bound of 0 or upper
bound of 1. Exploiting this fact, Lim and Smith [17] proposed a partitioning algorithm
that solves linearized mixed integer subproblems obtained by designating one vari-

able as basic. Letting wh be basic and substituting wh =
∑

i∈A\{h} bi(1−wi)+bh−B
bh

in (11),
we have the following BLP in which wh is eliminated and wi, ∀i ∈ A \ {h}, are now
binary.

Minimize
∑

k∈K

∑

j∈N

dk
j αk

j +
∑

i∈A\{h}
(qixi)wiβi

+(qhxh)βh

∑
i∈A\{h} bi(1− wi)+ bh − B

bh
, (12a)

subject to (11b), (11c), and (11d) (12b)

0 ≤
∑

i∈A\{h} bi(1− wi)+ bh − B

bh
≤ 1, (12c)

wi binary, ∀i ∈ A \ {h}. (12d)

J Glob Optim (2007) 38:181–199 193

Let us substitute wiβi and wiβh by si and ti, respectively. Accordingly, we add the
following standard linearization constraints for i ∈ A \ {h}:

βi + βiwi − si ≤ βi, (13a)

ti − βi ≤ 0, (13b)

ti − βiwi ≤ 0, (13c)

si, ti ≥ 0, (13d)

where βi is an upper bound on βi. Note that we have removed upper bounds for si and
lower bounds for ti since they are not necessary for this particular problem. (See [17]
for a discussion on possible upper bounding schemes for βi, and for a more detailed
discussion on the sufficiency of the linearization constraints to ensure si = wiβi and
ti = wiβh ∀i.) Now, the resulting linearized mixed integer subproblem can be solved
via widely used discrete optimization techniques such as branch-and-bound/cut meth-
ods. Finally, an exact solution can be identified after solving |A| subproblems, one
corresponding to each possible value of h ∈ A.

Note that there exists a finite number of pairs of extreme points for disjoint poly-
hedral sets in (11b)–(11e). Let
 denote the set of such pairs. Furthermore, let φπ(x)

denote the objective function value of (11a) at π ∈
 given x (i.e., φπ(x) is the optimal
reward from post-interdiction flows given x, assuming optimal arc interdiction on the
part of the enemy). Then, our network design problem can be formulated as follows.

Maximize ρ
∑

k∈K

∑

i∈A

f k
i uk

i + (1− ρ)min{φπ(x) : π ∈
} −
∑

i∈A

cixi, (14a)

subject to (1b), (1c), (1e), (1j), and uk
i ≥ 0 ∀i ∈ A ∀k ∈ K. (14b)

Observing the linearity of φπ(x) with respect to x given π , we have that min{φπ(x) :
π ∈
} is concave with respect to x. Therefore, we can prescribe a cutting-plane algo-
rithm (or outer-linearization method), which we call BCPA, that generates Benders
cuts in an iterative fashion. At iteration j of BCPA, we have the following master
program.

Maximize ρ
∑

k∈K

∑

i∈A

f k
i uk

i + (1− ρ)z−
∑

i∈A

cixi, (15a)

subject to (1b), (1c), (1e), (1j), and uk
i ≥ 0 ∀i ∈ A ∀k ∈ K, (15b)

z ≤ φπ(x) ∀π ∈
j, (15c)

z unrestricted, (15d)

where
j ⊆
 is the set π -vectors obtained in prior iterations by solving the interdic-
tion problem. A detailed algorithm can be described as follows.

Algorithm BCPA

Step 0 Set
1 = ∅ and j = 1.
Step 1 Solve the problem (14) to obtain a solution x j and z j.
Step 2 Given x j, solve the problem (11) to obtain a solution π and its objective value
φπ(x j).
Step 3 If z j ≤ φπ(x j), then x j is optimal and stop. Else, put
j+1 =
 j ∪ {π},
increment j← j+ 1, and return to Step 1.

194 J Glob Optim (2007) 38:181–199

4 Computational study

In this section, we report a computational study that investigates the efficacy of the
proposed algorithms. Recall that case 1 is relatively easier to solve due to the simple
structure of the enemy interdiction problems, whereas case 3 requires a considerable
amount of computational effort because we need to solve |A|mixed-integer subprob-
lems at each iteration. Hence, we experiment with different sets of test instances
having different sizes as summarized in Table 1. Five instances from each set are
generated in the following manner.

Given a commodity k ∈ K, the number of origin nodes is randomly selected over
the integers 1, 2, . . . , �0.25|N|, and so is the number of destination nodes. Using these
numbers, nodes are randomly designated as origin or destination nodes (but not both)
of commodity k. At each origin node, the supply of commodity k is randomly chosen
from integer values in [1, 25]. The total supply of the commodity is then randomly
assigned to the corresponding destination nodes so that the total demand is equal to
the total supply for commodity k. After generating these values for all commodities,
a set of arcs, A, is built by randomly generating paths for all combinations of origin-
destination (o-d) pairs for each commodity. If there exists a node at which no arc is
incident, we randomly generated an o-d path that contains this node, and added all
arcs in this path to A (if they are not already present). It is thus possible to generate
some networks with the same numbers of nodes and commodities that have consider-
ably different numbers of arcs in the network. Since the number of integer variables
depends on the number of arcs in A, a large deviation in |A| among a common set
of test instances is not desirable for making meaningful computational comparisons.
In order to maintain consistency, we enforced the existence of a minimum number of
arcs for each instance belonging to the same test set. The minimum number of arcs
for each instance in a test set is displayed in the column MINARC in Table 1. If the
number of arcs in A is less than MINARC, we repeatedly generated random o-d paths
and added those arcs not already in the arc set to A, until the total number of arcs
was at least MINARC. Ranges of the actual numbers of arcs generated in these test
instances are reported in the fifth column of Table 1.

For each arc i ∈ A, we randomly generated ci, bi, qi, and f k
i ,∀k ∈ K from integer

values in the ranges [10, 20], [10, 20], [20, 60], and [1, 5], respectively. C was set as∑
i∈A ci multiplied by a random factor between 0.8 and 1, while B was set as

∑
i∈A bi

Table 1 Summary of test problems from general network topologies

Set Number of
nodes

Number of
commodities

MINARC Number of arcs Tested cases

Case 1 Case 2 Case 3

S1 6 3 13 14–16 o o o
S2 6 5 18 18–19 o o o
S3 6 7 21 21–25 o o o
S4 9 3 30 31–40 o o
S5 9 5 45 46–47 o o
S6 9 7 60 60–62 o o
S7 12 3 70 70–74 o
S8 12 5 80 80–84 o
S9 12 7 100 101–108 o

J Glob Optim (2007) 38:181–199 195

multiplied by a random factor in [0.1, 0.4]. For each o-d pair of commodity k ∈ K,
we computed the maximum flow cost to deliver one unit of commodity k over all
o-d paths generated as described above. Then, the reward for shipping one unit of
commodity k ∈ K to the destination node was set as this path flow cost multiplied
by a random factor between 1.5 and 2. After rewards for all destination nodes of
commodity k are computed, the f k

i -values are accordingly adjusted if arc i is incident
to a destination node of commodity k. All runs were conducted using CPLEX 8.1
C++ Concert Technology on a Sun Fire 280R server with 900 MHz UltraSPARC-III
CPU. A time limit is set as 7,200 s for solving each problem.

When reporting results below, the cutting plane algorithm and the single mixed
integer program for solving case 1 problems are denoted as CASE1a and CASE1b,
respectively. Similarly, CASE2 denotes the partitioning method described in Sect.
3.2. We implemented three variants of the cutting plane algorithm, BCPA, for case
3. Recall that BCPA solves each interdiction problem by solving |A| subproblems in
order to generate a new cut. We refer to this standard implementation as CASE3a.
However, instead of solving all subproblems, we could stop after identifying a single
cutting plane, which would reduce the number of integer programming subproblems
that must be solved at each iteration, at the risk of adding a weak cutting plane when
a stronger one would be derived from a subsequent subproblem. (Naturally, all sub-
problems must be solved at the last iteration to prove optimality.) We refer to this
implementation as CASE3b. At the other extreme, we can solve all subproblems as
done in CASE3a, but instead of adding the cutting plane from the subproblem that
yields the optimal interdiction, we can add a cutting plane to the master problem
from each subproblem that cuts off the current master problem solution. We call this
implementation CASE3c.

We report the average performances of the case 1 implementations in Table 2.
The columns labeled “CPU Time” provide the average CPU seconds to solve the
five instances in that set, if all five instances could be solved within the 7,200 s time
limit. Else, this column displays in parentheses the number of instances that could
be solved in this set within the time limit. The columns marked by a are averaged
only over those instances that CASE1a solved to optimality, while those marked
by b are averaged over those instances that CASE1a did not solve to optimality.

Table 2 Average performances for solving case 1 instances

CASE1a CASE1b

Set CPU time CPU timea OPT GAP %b Number of cutsa CPU time CPU timea

S1 0.15 0.15 0 3.2 0.08 0.08
S2 1.30 1.30 0 13.6 0.23 0.23
S3 2.33 2.33 0 17 0.30 0.30
S4 (3) 24.99 2.19 105.7 0.82 0.83
S5 (4) 103.02 5.61 111.5 6.00 2.51
S6 (3) 1103.33 0.36 251.7 16.01 11.96
S7 (1) 428.57 0.91 51 18.93 20.54
S8 (0) – 2.57 – 350.22 –
S9 (0) – 0.88 – 1696.43 –

a Average taken over instances that CASE1a solved to optimality
b Average taken over instances that CASE1a did not solve to optimality

196 J Glob Optim (2007) 38:181–199

The column labeled “OPT GAP %” reports the average value of 100*(final upper
bound—optimal objective value)/(optimal objective value), and “Number of Cuts”
reports the average number of cutting planes generated in the course of the CASE1a
algorithm. (In CASE1a, a valid upper bound is obtained from the solution of any mas-
ter program, and a valid lower bound can be obtained by ascertaining the enemy’s true
interdiction action, given the first-stage network design, and solving the post-inter-
diction multicommodity flow problem to identify a complete feasible solution.) These
results clearly demonstrate that CASE1b is a more efficient approach to solving these
problems than CASE1a regardless of the instance size, and that the relative efficiency
of CASE1b over CASE1a seems to increase as the problem size increases. It appears
that the cutting planes employed by the CASE1a implementation are too weak to
force a rapid convergence, as evidenced by the number of cutting planes typically
required to solve a single instance.

The CASE2 algorithm terminated with optimal solutions for each instances in sets
S1–S4, and for four out of five instances in S5. However, it was unable to solve any
instance in S6 within the time limit. Average solution times for those instances solved
within the time limit are 4.6, 17.8, 61.3, 200.8, and 3076.7 s for instance sets S1–S5.
Note that these instances are much harder to solve using the CASE2 algorithm than
using the CASE1b algorithm: Over instance sets S1–S3, CASE2 consumed an average
of 57.5, 77.4, and 76.6 times the computational effort required by CASE1b.

We report our computational comparison of the case 3 implementations in Table 3.
All three procedures were able to yield optimal solutions for test instances in sets S1
and S2, while only two S3 instances were solved within the time limit, as displayed
by the “Solved” column. The column “BND GAP%” is the same as “OPT GAP%”
except that it replaces the optimal objective value by the best lower bound obtained,
since we did not obtain the optimal solution for these instances. The remaining column
labels are the same as those used in Table 2, except that the last column displays both
the average number of cuts generated and the average number of iterations required
to generate these cuts in parentheses, since multiple cuts are generated at each itera-
tion of the CASE3c implementation. (For CASE3a and CASE3b, the number of cuts
equals the number of iterations.) Note that since we do not solve the enemy’s problem
to optimality in CASE3b (because we stop when any valid inequality is identified),
we do not obtain a lower bound on the optimal objective value.

CASE3b consistently outperformed other two methods by consuming 27.0, 39.1,
and 29.9% of CPU times required by the second best method for solving instance
sets S1, S2, and S3, respectively. Interestingly, CASE3c performs the fewest iterations

Table 3 Average performances for solving case 3

CASE3a CASE3b CASE3c

Set Solved CPU BND Number CPU Number CPU BND Number
timea GAP %b of cutsa timea of cutsa timea GAP %b of cutsa

S1 5 70.2 – 40.2 15.8 50.6 58.5 – 333.6 (23.4)
S2 5 1449.5 – 170.6 426.4 207.8 1089.6 – 1474.6 (81.8)
S3 2 4880.0 18.5 236 1457 357.0 5498.8 15.5 1263.7 (146)

a Average taken over instances solved to optimality
b Average taken over instances not solved to optimality

J Glob Optim (2007) 38:181–199 197

on average, followed by CASE3a. This was anticipated because CASE3c is capable
of generating multiple cuts in addition to the one generated by CASE3a that may
become binding in future iterations, and because CASE3b does not necessarily use
the best cut from the enemy’s problem, unlike CASE3a. However, each iteration of
the CASE3a and CASE3c algorithms requires the solution of |A| enemy subproblems.
Since CASE3b only requires the solution of this number of subproblems in the worst
case (occurring at the last iteration and at any iteration in which only the last subprob-
lem encountered yields a cutting plane), this implementation successfully trades-off
the solution of more master problems in exchange for solving fewer subproblem.

Additionally, despite the fact that CASE3c requires fewer iterations than CASE3a,
and that both algorithms solve |A| subproblems at each iteration, CASE3c requires
more computational time than CASE3a on the two S3 instances solved to optimality.
This is due to the additional computational effort required to solve the larger master
problems encountered by CASE3c, due to the fact that multiple cuts are added to
the master problem at each CASE3c iteration. However, the average relative gap of
CASE3c is slightly smaller than that of CASE3a on the three instances not solved
to optimality. In order to include CASE3b in this comparison, we recalculated the
relative gap using the best lower bound between those obtained from CASE3a and
CASE3c. The resulting average relative gaps of CASE3a, CASE3b, and CASE3c are
18.4, 12.0, and 14.7%, respectively. Based on these observations, we conclude that
CASE3b is the best method of our three procedures.

Finally, for the sake of interest, we report the optimal objective values for test sets
S1 and S2 when each case is solved in Table 4. Differences between optimal objective
values for cases 1 and 2 are slight, and indicate that neither heuristic interdiction
strategy seems to dominate the other. However, when the enemy acts optimally, the
designer’s profit decreases significantly. In particular, the optimal objective value of
case 3 is less than 50% of those obtained from cases 1 and 2 on average. Therefore,
the enemy’s ability to optimally solve the interdiction problem can indeed be a crucial
factor in effectively reducing the network designer’s profit.

5 Concluding remarks

The three problems described above are all strongly NP-hard, but can be optimally
solved with the use of integer programming and decomposition algorithms. The devel-
opment of these models is only part of the challenge in the field of network interdiction.

Table 4 Optimal objective
values of instances in S1 and S2
for cases 1–3

Set Instance Case 1 Case 2 Case 3

1 1547.2 1519.3 668.3
2 636.6 728.2 428

S1 3 524.5 488.8 220
4 1344.5 1307.8 582.5
5 916.5 890.8 462.2
1 615.7 640 200
2 770 823.4 343.5

S2 3 704.4 737.4 225.5
4 1315 1336.6 739.8
5 1544.9 1585.4 1327.3

198 J Glob Optim (2007) 38:181–199

For instance, we can then devise a design algorithms for various other modes of
heuristic interdiction, perhaps corresponding to those observed within context-specific
applications. Also, recall that the network design problem presented in this paper is
strongly NP-hard, regardless of the interdiction strategy being employed by the fol-
lower. Hence, another possible avenue to explore for future research involves the
analysis of certain network topologies for which these design problems can be solved
in polynomial time.

Acknowledgements The authors gratefully acknowledge the support of the Office of Naval Research
under Grant Number N00014-03-1-0510 and the Air Force Office of Scientific Research under Grant
Number F49620-03-1-0377. They are also grateful for the comments and feedback offered by two
anonymous referees.

References

1. Alevras, D., Grötschel, M., Jonas, P., Paul, U., Wessaly, R.: Survivable mobile phone network
architectures: Models and solution methods. IEEE Commun. Magazine 36, 88–93 (1998)

2. Bard, J.: An algorithm for solving the general bilevel programming problem. Math. Oper. Res. 8,
260–272 (1983)

3. Bard, J.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academic Publish-
ers, Norwell, MA, (1998)

4. Bard, J., Falk, J.: An explicit solution to the multilevel programming problem. Comput. Oper.
Res. 9, 77–100 (1982)

5. Bialas, W., Karwan, M.: Two-level linear programming. Manag. Sci. 30, 1004–1021 (1984)
6. Bracken, J., McGill, J.: Mathematical programs with optimization problems in the constraints.

Oper. Res. 21, 37–44 (1973)
7. Candler, W., Townsley, R.: A linear two-level programming problem. Comput. Oper. Res. 9, 59–76

(1982)
8. Clarke, L., Anandalingam, G.: A bootstrap heuristic for designing minimum cost survivable net-

works. Comput. Oper. Res. 22, 921–934 (1995)
9. Colson, P. M. B., Savard, G.: A cutting plane algorithm for multicommodity survivable network

design problems. INFORMS J. Comput. 10, 1–11, (1998)
10. Colson, P. M. B., Savard, G.: Bilevel programming: a survey. 4OR 3, 87–107 (2005)
11. Cormican, K. J., Morton, D. P., Wood, R. K.: Stochastic network interdiction. Oper. Res. 46(2),

184–196 (1998)
12. Fortuny-Amat, J., McCarl, B.: A representation and economic interpretation of a two-level pro-

gramming problem. J. Oper. Res. Soc. 32, 783–792 (1981)
13. Fulkerson, D. R., Harding, G. C.: Maximizing minimum source-sink path subject to a budget

constraint. Math. Program. 13(1), 116–118 (1977)
14. Garg, M., Smith, J. C.: Models and algorithms for the design of survivable multicommodity flow

networks with general failure scenarios. OMEGA, to appear (2006)
15. Israeli, E., Wood, R. K.: Shortest-path network interdiction. Networks 40(2), 97–111 (2002)
16. Kydland, F.: Hierarchical decomposition in linear economic models. Manag. Sci. 21, 1029–1039

(1975)
17. Lim, C., Smith, J. C.: Algorithms for discrete and continuous multicommodity flow network

interdiction problems. IIE Trans., to appear (2006)
18. Magnanti, L. T., Wong, R. T.: Network design and transportation planning: Models and algorithms.

Transportation Sci. 18(1), 1–55 (1984)
19. Minoux, M.: Network synthesis and optimum network design problems: Models, solution methods

and applications. Networks 19(3), 313–360 (1989)
20. Myung, Y. S., Kim, H. J., Tcha, D. W.: Design of communication networks with survivability

constraints. Manag. Sci. 45, 238–252 (1999)
21. Ouveysi, I., Wirth, A.: On design of a survivable network architecture for dynamic routing:

Optimal solution strategy and efficient heuristic. Eur. J. Oper. Res. 117, 30–44 (1999)
22. Paul, G., Tanizawa, T., Havlin, S., Stanley, H. E.: Optimization of robustness of complex networks.

Eur. Phys. J. B 38, 187–191 (2004)

J Glob Optim (2007) 38:181–199 199

23. Rajan, D., Atamtürk, A.: Survivable network design: routing of flows and slacks. In: Ananda-
lingam, G., Raghavan, S. (ed) Telecommunication Network Design and Management, pp. 65–81
Kluwer Academic Publishers, Dordrecht, Boston, London, (2002)

24. Ríos, M., Marianov, V., Gutierrez, M.: Survivable capacitated network design problem: New
formulation and lagrangian relaxation. J. Oper. Res. Soc. 51, 574–582 (2000)

25. Shaio, J.: Constraint generation for network reliability problems. Ann. Oper. Res. 106, 155–180
(2001)

26. Smith, J. C., Sudargho, F., Lim, C.: Survivable network design under various interdiction scenarios,
pp. 225–230. San José, Spain (2005)

27. Vicente, L., Calamai, P.: Bilevel and multilevel programming—a bibliography review. J. Glob.
Optim. 5, 291–306 (1994)

28. Wollmer, R.: Removing arcs from a network. Oper. Res. 12(6), 934–940 (1964)
29. Wood, R. K.: Deterministic network interdiction. Math. Comput. Model. 17(2), 1–18 (1993)

	Survivable network design under optimal and heuristic interdiction scenarios
	Abstract
	Introduction
	Problem statement and notation
	Network design algorithms
	Case 1: capacity-based interdiction
	Cutting plane algorithm
	Static optimization model
	Case 2: flow-based interdiction
	Case 3: optimal interdiction
	Computational study
	Concluding remarks
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

